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ABSTRACT 
 
This study presents an innovative approach for sustainable and cost-effective 
groundwater monitoring. This approach takes advantage of recent advances in 
various technologies: (1) in situ autonomous sensors, (2) big data analytics, and 
(3) parallel high-performance computing for flow and reactive transport modeling. 
In situ sensors are used to periodically measure the key variables (such as pH, 
redox potential, electrical conductivity, and groundwater level), which control 
contaminant mobility and the plume spatial and temporal distribution. Based on a 
limited number of groundwater sampling, the data analytics methods—data mining 
and machine learning—allow us to identify and quantify the correlations between 
the in situ-measured variables and contaminant concentrations, and also to detect 
significant changes associated with the plume mobility. In addition, a state-of-the-
art parallel numerical flow and reactive transport simulator Amanzi, and uncertainty 
quantification software Agni are used to provide an improved physical and 
mechanistic understanding of the contaminated groundwater system behavior, and 
to predict the long-term plume distribution for optimizing and adapting the 
monitoring strategy. Amanzi and Agni were developed as part of the Advanced 
Simulation Capability for Environmental Management (ASCEM) program of the DOE 
Office of Environmental Management. Such modeling is critical, particularly, for 
assessing the impact of climate change and associated hydrological shifts. The 
developed approach is expected to significantly reduce the groundwater sampling 
frequency and associated cost. In addition, the real-time information on plume 
mobility serves as an early warning system, improving the resiliency of 
contaminated or potentially contaminated sites. We demonstrate this approach 
using as an example the Savannah River Site (SRS) F-Area, where groundwater is 
contaminated by various radionuclides, including uranium, tritium and technetium. 
 
INTRODUCTION 
 
Nuclear weapon production during the Cold War has resulted in groundwater 
contamination at many locations in the United States. Low-level radioactive waste 
solutions were often disposed into unlined seepage basins with minimal or no 
engineered barriers. Some of high-level radioactive waste tanks have been reported 
to have leaks, which led to widespread soil and groundwater contamination. The 
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U.S. Department of Energy, Office of Environmental Management (DOE-EM) 
manages the remediation of many contaminated sites, which is considered one of 
the most technically complex cleanup challenges in the world [1]. The overall cost 
is predicted to exceed $200 billion over the next few decades. 
 
There have been a variety of remediation techniques deployed at the DOE-EM sites, 
such as soil excavation, pump-and-treat, and bioremediation. Although many 
remediation efforts have been successful or are expected to finish in the next 
several decades, there are still dozens of sites that have contaminant 
concentrations above regulatory standards. The biggest challenge is to address a 
large volume of contaminated soil and groundwater with relatively low 
concentrations, cases where soil removal is not practical due to its large volume, 
and pump-and-treat systems are not effective due to relatively low contaminant 
concentration. For such sites, monitored natural attenuation (MNA) has been 
considered as a preferred alternative, with the premise that the contamination 
would not compromise the public health, and that natural flow and geochemical 
process would be sufficient to reduce concentrations in the future.  
 
In addition, Enhanced attenuation (EA) has become a recent focus to achieve cost-
effective and sustainable remediation. EA introduces an amendment to enhance the 
attenuation to bring concentrations down to regulatory levels until natural 
processes take over. For example, at the SRS F-Area, base injection was performed 
to increase pH and immobilize uranium, which resulted in concentration lower than 
the regulatory standard and cost savings of approximately $9 million per year 
compared to the existing pump-and-treat system [2].  
 
The application of EA and MNA, however, create a new challenge in site closure, 
since contaminants are sequestered in subsurface rather than removed. Continued 
groundwater monitoring will be required for several decades to ensure long-term 
stability and safety. The current practice of monitoring is based on the regular 
sampling and analyzing the contaminant concentrations in groundwater samples at 
numerous wells, which becomes costly over a long time frame. Although the 
monitoring cost is a fraction of active remediation cost, the long-term monitoring is 
still expected to account for a large fraction of the life-cycle cleanup costs at the 
DOE sites.  
  
To reduce the long-term monitoring cost, Savannah River National Laboratory 
(SRNL) and Lawrence Berkeley National Laboratory (LBNL) have been developing 
an innovative approach, using in situ automated sensors to replace and reduce 
groundwater sampling [2,3]. Recent advances in in situ sensors allow us to 
continuously monitor groundwater parameters, and to stream data through wireless 
or phone networks. Although in situ measurable properties, such as pH, dissolved 
oxygen, nitrate concentration, redox potential, groundwater level, and electrical 
conductivity, are not the contaminant concentrations of interest, many of them are 
the key properties that control plume mobility and its spatial and temporal 
distributions. At the SRS, for example, in situ measurable properties are found to 
be almost perfectly correlated to the contaminant concentrations [3]. Since these in 
situ variables are also leading indicators of the plume mobility, the in situ sensors 
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can serve as an early warning system so that practical actions can be taken to 
manage the plume migration. For this purpose, the application of data analytics 
methods is one of the key approaches in monitoring strategy to detect meaningful 
changes in the plume migration and to identify the noise that is inherent in 
environmental data. 
 
The current study focuses on two aspects of advances in advanced long-term 
monitoring: (1) big data analytics, and (2) reactive transport modeling. Data 
analytics capabilities have been rapidly expanding in other areas (such as computer 
science, artificial intelligence, climate science), which can be easily transferred to 
the DOE-EM applications. Data analytics enables us to extract critical information 
from historical datasets accumulated over many years at the DOE-EM sites, and is 
important for system understanding and decision-making, as well as for improving 
sampling and monitoring strategies. Modeling of flow and contaminant transport 
enables the prediction of contaminant plume evolution under various conditions for 
many years.  
 
Over the last five years, the ASCEM project, funded by DOE-EM, has made a 
significant advancement in the development of a flow reactive transport code, 
Amanzi, taking an advantage of DOE’s state-of-the-art high performance computing 
capabilities. The developed 3D reactive transport simulator can now include realistic 
geological features, boundary conditions and artificial structure (such as engineered 
barrier systems), as well as complex geochemical reactions (such as the 
interactions between contaminant concentrations and controlling variables) [3].  
 
We demonstrate the effective integration of these components at the SRS F-Area, 
where contaminant plumes and subsurface structure are well characterized and 
historical monitoring and geological datasets have been effectively curated. Having 
real data and established models, the SRS F-Area can be considered as a testbed to 
achieve sustainable and cost-effective remediation and monitoring at the DOE-EM 
sites. Such an integrated technology can also be transferable to other types of 
groundwater contamination such as the DOE Office of Legacy Management sites, 
nuclear power plants, and other contaminated sites. 
 
SITE DESCRIPTION 
 
The Savannah River Site (SRS) is located in south-central South Carolina, near 
Aiken, approximately 160 kilometers from the Atlantic Coast. It covers about 800 
km2 (300 mi2) and contains facilities constructed in the early 1950s to produce 
special radioactive isotopes (e.g., plutonium and tritium) for the U.S. nuclear 
weapons stockpile. The SRS F-Area seepage basins were constructed as unlined, 
earthen surface impoundments that received ~7.1 billion liters of acidic, low-level 
waste solutions from the processing of irradiated uranium in the F-Area Separations 
facility from 1955 through 1988 [4]. Currently, an acidic contaminant plume 
extends from the basins ~600 m downgradient to the Four Mile Branch creek, 
including various radionuclides, such as uranium isotopes, Sr-90, I-129, Tc-99, 
tritium, and other contaminants, such as nitrate.  
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Various remediation activities have been conducted at the site, including capping of 
the basins (1991) and pump-and-treat (1997–2004). A hybrid funnel-and-gate 
system has been in operation since 2004, which includes low-permeability 
engineered flow barriers, and injection of alkaline solutions. The base injections are 
considered to be effective in neutralizing the acidic groundwater and in greatly 
increasing uranium retardation, since uranium mobility is significantly influenced by 
pH (because higher pH values increase uranium sorption). At the same time, the 
barriers slow down plume migration and increase decay and mixing before the 
plume reaches the Four Mile Branch creek, a down-gradient stream that ultimately 
captures the plume. Monitored Natural Attenuation (MNA) is a desired closure 
strategy for the site, assuming that infiltration of rainwater will eventually increase 
the pH of the plume, causing much stronger retardation and dilution of the uranium 
plume.  
 
METHODOLOGY 
 
Big Data Analytics 
 
The SRS database includes the results of monitoring of 422 analytes, which can be 
grouped into 4 main categories: radioactive, VOCs, heavy metals, and general 
groundwater quality data. The database includes the results of measurements in 
165 wells and in 3 aquifers. In this study, we used the results of measurements in 
39 typical monitoring wells over the last 30 years from January 1990 to September 
2015. 
 
The analyzed database contains both numerical and categorical data, with 
duplicates of time stamps, gaps in time series, and some negative values of 
concentrations, i.e., outliers. The QA/QC of time series data included removing 
outliers or noise (based on finding so-called additive outliers), using a cubic spline 
function. We also interpolated all variables at the same Quarterly time stamps, 
which is the necessary condition to provide further correlation analysis between the 
concentrations of radionuclides and controlling variables. 
 
Principal component analysis (PCA) is a typical data mining method to quantify and 
visualize the variability and correlations among multi-dimensional variables. The 
goal of the PCA is to transform the initial variables into a new set of variables, 
which explain the variation in the data. These new variables, which are called 
principal components, represent a linear combination of the original variables. The 
PCA is used to reduce the dimensionality of multivariate data to 2 or 3 principal 
components that can be used to visualize graphically the dataset with minimal loss 
of information. 
 
Using the SRS data, the PCA was conducted to analyze multivariate data to identify 
the correlations among different variables, with a particular focus on the 
correlations between in situ measurable parameters (pH, electrical conductivity, 
nitrate concentration) and contaminant concentrations (U-238, I-129, H-3). We 
would note that electrical conductivity at this site is dominated by the nitrate 
concentration.  



WM2017 Conference, March 5 – 9, 2017, Phoenix, Arizona, USA 

5 

 

 
Reactive Transport Modeling 
 
A 3D reactive transport model has been continuously developed and improved over 
the last five years [3,5,6]. We describe the model briefly here for completeness. 
The 3D hydrogeological model was developed including the heterogeneous 
hydrostratigraphic interfaces and engineered barrier systems. There are three 
layers units within the Upper Three Runs Aquifer: an upper aquifer zone (UUTRA), a 
Tan Clay Confining Zone (TCCZ), and a lower aquifer zone (LUTRA). The domain 
also includes low-permeability engineered barriers, which are part of the funnel-
and-gate system (Fig. 1). The unstructured 3D prismatic mesh was created using 
the Los Alamos Grid Toolbox (LaGriT; http://lagrit.lanl.gov; Fig. 1b-d). The mesh 
used in this study has 1,849,039 cells and 982,998 vertices 
 

Figure 1. (a) 3D prismatic mesh generated by LaGriT is shown using an 
exaggerated vertical scaling to highlight the three stratigraphic layers, and (b) the 
barrier wall representation. In (a), the green region is the upper aquifer, the middle 
brown layer is the Tan Clay confining zone, and the blue region is the lower aquifer. 
The yellow, red and blue surface areas are the three basin locations. 
 
The 3D flow and transport simulations were performed using the Richards equation 
and advective transport Process Kernels in Amanzi on the National Energy Research 
Scientific Computing Center (NERSC) high performance computing (HPC) platforms. 
The aquifer properties that were developed for the two-dimensional flow model by 
Bea et al. [5] were used in the current study. A very low permeability of 1×10-17 m2 
was assumed for the engineered barriers. The upstream model boundary was 
treated as fixed pressure based on the measured water-table height. The upper 
groundwater boundary condition was assigned as a constant recharge boundary 
with a moving seepage face to allow groundwater flow to upwell and discharge to 
the Four Mile Branch creek. The other boundary conditions were treated as no-flow, 
including the vertical boundary below the stream, the bottom boundary of the 
model, which is a relatively continuous low-permeability clay layer, and sides of the 
model which are parallel to flow. 
 
The geochemical conditions have been extensively characterized through many field 
and laboratory experiments, particularly for uranium geochemistry. In this paper, 

http://lagrit.lanl.gov/
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we focus on uranium chemistry, based on the mechanistic models that have been 
developed to describe its sorption and pH-dependent behaviors. As described in [5], 
the natural attenuation of the acidic-U(VI) plume in the F-Area is likely to be 
affected mainly by a combination of the following processes: (1) 
adsorption/desorption of U(VI) onto/from the surface of different minerals (mainly 
kaolinite and goethite at this site) under different mechanisms (i.e., electrostatic 
surface complexation and/or ion exchange) [7]; (2) pH effects related to H+ 
sorption and/or Al mineral dissolution and precipitation; (3) mixing of the plume 
groundwater with clean (and higher pH) background groundwater. A three-
dimensional reactive transport model was assembled by combining the flow and 
transport model and the geochemical model. The combination of the flow and 
transport portions of the model and the geochemical model was enabled by the 
Alquimia interface in Amanzi. This interface makes it possible to use existing 
geochemical codes (e.g., PFLOTRAN, CrunchFlow) within the ASCEM HPC 
infrastructure through a generic coupling. 
 
To account for the uncertainty in model parameters, we used ASCEM’s uncertainty 
quantification (UQ) toolset, Agni. First, we performed Monte-Carlo simulations by 
randomly generating parameter sets and running reactive transport simulations 
with given parameter sets. In addition, the Sobol’ global sensitivity indices were 
computed based on the MC-based approach developed by Wainwright et al. [8]. 
The sensitivity analysis enables us to identify the controlling parameters that cause 
variability and uncertainty as well as key parameters of long-term monitoring.   
 
RESULTS AND DISCUSSION 
 
Data Analytics 
 
Fig. 2 illustrates the graphs of original (open circles) and QA/QC corrected (i.e., 
with the outliers removed and aligned to the same time stamps (90-day difference) 
of the water table and concentrations. Our QA/QC procedure successfully removes 
the outliers, particularly in the water table and tritium concentration data. These 
corrected data were then used for the PCA analysis and determination of the 
correlation between the variables. 
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Figure 2. QA/QC results. Each plot includes the original data (open circles) and 
QA/QC corrected data. The 1st vertical red line in 1999 indicates the time of the 
basin closure; the 2nd vertical red line in 2003 indicates the end of the pump, treat, 
and reinject operations, which were conducted in 1999-2003; the 1st green line 
indicates the time of the Installation of Engineered Subsurface Barrier (ESB) in 
2004. The base injections began in the ESB gates in 2005, and base injections in 
the wetlands in 2008 (dashed vertical green line). 
 
Fig. 3 shows the results of the PCA analysis of the dataset of 39 wells. We divided 
those wells into two groups located in upgradient and downgradient regions from 
the barrier walls. Since the first and second principle components account for most 
of the variability (>60%), we only show those two components. In the bi-plots of 
Fig. 3, each arrow represents the loading of each variable on the principle 
components. When two arrows are pointing in the same or opposite direction, those 
two variables are strongly correlated. When the two arrows are orthogonal, those 
two variables are likely to be uncorrelated.  
 
PCA reveals that (1) pH is strongly correlated with I-129 and U-238 concentrations, 
and (2) nitrate concentrations are strongly correlated with Tc-99 and H-3, and 
weakly correlated with I-129 and U-238. This would be because U-238 and I-129 
are affected by pH and other geochemical conditions, while Tc-99 and H-3 are non-
reactive tracers, behaving similar to nitrate transport. In addition, we can see that 
specific conductance (SC) is correlated with nitrate concentrations, since nitrate 
dominates total dissolved solid (TDS) at this site. These findings are consistent for 
both regions, suggesting that the correlations can be used over the site.  
 

  
 (a)          (b) 
Figure 3. Results of the PCA analysis of the water table depth and concentrations in 
the wells: (a) downstream of the wall, and (b) upstream of the wall. These figures 
visualize the loading of each variables on the first and second components.  
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Reactive Transport Modeling 
 
Fig. 4 shows the simulated evolution of the low-pH and uranium plumes. This 
simulation includes capping of the seepage basin, which limited the infiltration after 
the basin operation stopped. It does not include simulations of other remediation 
treatments at the site. The plumes initially move straight down vertically until they 
hit the water table, and then migrate laterally mainly within the upper aquifer (Figs. 
4a and 4d). The low-pH plume moves more quickly downgradient (Figs. 4a and 4b), 
increasing the mobility of uranium and creating a way for the uranium plume to 
follow (Figs. 4d and 4e). As the plume migrates downgradient toward the creek, the 
plume goes through the troughs in the bottom of the upper aquifer (Fig. 4b). The 
model predicts that a significant amount of uranium is expected to trap in the 
vadose zone (Fig. 4f) in 2050 even though pH would be neutralized (Fig. 4c), which 
suggests the long-term effect of capping the basin. 
 

 
Figure 4. Upper figures (a-c): simulated evolution of low-pH plume (pH> 4); and 
lower figures (d-f): uranium plume (concentration>1x10-6mol/L). The sky blue 
region is the low permeable TCCZ, which separates the upper and lower aquifers. 
Vertical exaggeration=15X. 
 
Modeling and UQ analysis allow us to simulate the correlations between the 
contaminant concentrations and in situ controlling variables under various 
hydrological and geochemical conditions. Fig. 5 demonstrates the correlations 
between U-nitrate and U-pH correlations determined for different conditions (100 
realizations). We varied seven parameters (cation exchange capacity, sorption site 
density, source pH and U concentration, precipitation, discharge rate and 
permeability), which were identified to be important in the previous studies [5,6]. 

(a) 1966 

(d) 1966 
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In addition, sensitivity analysis enables us to identify which parameters are 
influencing these correlations and creating variability more significantly than the 
others. Sobol’ global sensitivity indices (Fig. 6) suggest that the key parameters are 
the Upper Aquifer permeability, cation exchange capacity (CEC), and source 
uranium concentrations. The precipitation has little effect on the correlations. These 
findings are useful for long-term monitoring. For example, the key parameters are 
mostly material properties, the correlations would not be sensitive to future climatic 
conditions.  
 

 
     (a)                             (b) 
Figure 5. Simulated correlations between uranium (U) concentration (log-
transformed mol/L) and in situ variables at FSB95D and Well FSB110D: (a) nitrate 
concentration (log-transformed mol/L) and (b) pH. In each plot, the correlations are 
normalized to the ones in 1992 in order to facilitate the visualization and 
comparison. 
 

 
Figure 6. Sensitivity analysis results; Sobol’ sensitivity index of each variable with 
respect to the correlations between pH and U-238 concentrations. 
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CONCLUSION 
 
In this study, we demonstrated the key scientific advances for establishing cost-
effective long-term monitoring, using the modern methods of data analytics and 
reactive transport modeling. The data analytics methods were used to perform the 
QA/QC statistical analysis, and to identify the correlations among in situ measured 
controlling parameters and contaminant concentrations. The PCA method is found 
to be a powerful tool to analyze multi-dimensional and large datasets. We also 
developed a 3D flow and reactive transport model to describe the contaminant 
plume evolution in a mechanistic manner, including the complex pH-dependent 
reactions of uranium. UQ results suggest that the correlations between in situ 
measurable concentrations (i.e., pH, EC, nitrate) and contaminant concentrations 
are variable influenced mainly by hydrological and geochemical properties. 
 
Our future work will focus on evaluating the efficacy of the current or planned 
enhanced attenuation treatments, and their impact on the long-term monitoring 
strategy. We will also continue the spatio-temporal data analysis and modeling to 
identify an optimal number and the layout of groundwater monitoring wells and in 
situ sensors.  
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